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1.Purpose and overview of the LCA simulator

As powertrains diversify in their electrification levels - Hybrids (HEV), Plug-in Hybrids (PHEV)
and Battery Electric Vehicles (BEV]) - along with the fuel production pathways - fossil and
renewable routes - the carbon footprint over their life-cycle heavily depends on their use
cases (e.g. driving profile] and context of use (e.g. carbon intensity of electricity). This
interactive tool allows to design several scenarios combining these parameters and to

compare their environmental performance.

The tool design is made of two main panels (Figure 1): on the left hand side, the results panel,
where a bar graph representing life-cycle GHG emissions is displayed; on the right hand side,

the configuration panel.

Tests, modeling
& design by

(P

Life cycle (LCA) of gr h
from p: ger cars in real Id
A function of electrification level, end-user behavior, fuel,
industrial and energy sector key parameters

gas
di

@ Manufacture @ Electricity @ Fuel WTT @Fuel TTW minus Recycdled CO2 @ Recycled COZ2 ++++++ Total LCA GHG
300

250
z | 31 ]
8 79 " D 5 - )
g™ % : o X
2 & - =
£ R
s e
€ w0
5

50

BEVEOLWH RI: HEV ZKWhRL  HEV IKWH RS PHEV 1SKWh  PHEV 1SKWh  PHEV 1SkWh  PHEV 15kWh
Nene (Blank) HNeneE10 None HVO RV dayE10 RETdayHVO REZdays€10 R 3days HVO

®

As powentraing diversify in their electrification levels — Hybrids (HEV), Plug-in Hybrids (PHEV) and
Battery Electric Vehicles (BEV) = along with the fuel production pathways = fossil and renewable routes
=~ the carbon footprint over their life cycle heavily depends on their use cases (e.g. driving profile) and
context of use (e.g. carbon intensity of electricity). This interactive tool allows to design several
scenarios combining these parameters and to compare their emvironmental performance.
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Figure 1: Screenshot of the online vehicle LCA simulator
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2. Results panel
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Figure 2: Screenshot of the results panel

The results panel (Figure 2] displays a bar graph, allowing to compare the life-cycle GHG

emissions of the selected configurations, which are detailed on the X-axis. A split by origin of

the emissions follows the vehicle life-cycle GHG emissions perimeter illustrated in Figure 3:

GHG emissions related to the manufacture of the vehicle, including the glider and the
battery;

GHG emissions related to the production of the electricity used by the vehicle;

GHG WtT emissions related to the production of the fuels used by the vehicle;

GHG TtW emissions related to the combustion of the fuels used by the vehicle: it includes
the non-CO, GHG tailpipe emissions (CH4 and N20 emissions, measured during the
experimental campaign) and excludes the recycled CO,, which are by nature transparent
from an LCA perspective;

Recycled CO; “emissions” which are in fact neutral from an LCA perspective (even if they
can be measured at the tailpipe] and therefore excluded from the LCA scope. Recycled
CO; relate to the share of CO, emissions offset which occurs during the production of the
fuel and that results in a closed-loop carbon-cycle: e.g. for biofuels the CO, captured by
biomass from the air when it grows; or for e-fuels the CO, captured from the air via Direct
Air Capture.
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2. Results panel

Furthermore, the utility factor of PHEVs and HEVs configurations can be read when hovering
the mouse pointer over the corresponding bar.
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Figure 3: Vehicle life-cycle GHG emissions perimeter




@ncawe

3. Configuration panel

3.1 Vehicles section

USER GUIDE

e

® 120

Battery capacity [kWh]
Ca) GG )

(DG

Electrification level

(6 (s ) (o) @D (20) (30
(20 ) (40 ) &0 ) (100) [120) [ 140)
Total lifelime mileage [ken]

125000 | (17 150000° )

187500 ([ 250000

Battery production [kgCO2eqWn]

Figure 4: Screenshot of the vehicles section

The vehicles section (Figure 4) allows to set the configuration of different electrified vehicles:

HEVs, PHEVs and BEVs:

e The PHEV simulations are supported by the models described in the Concawe report

10/22;

e The HEV configuration is simulated as a lighter PHEV (120 kg less, accounting for a

smaller battery and no recharging system) running in Charge Sustaining mode (CS) only;

e The BEV configuration derives from the PHEV one with:
o 2300kg curb mass in 80kWh setting (200 kg more than the tested PHEV);
o 20% reduced rolling and drag coefficients (reflecting improved vehicle aerodynamics

and optimized tires);
o a250kW Permanent Magnet Synchronous Machine (PMSMJ;
o and a heat pump having a Coefficient of Performance (COP) of 3 for cabin heating

instead of a resistor.

For each of these vehicles, the battery capacity can be parametrized, between 2 and 10 kWh
for the HEVs, between 2 and 30 kWh for the PHEVs, and between 20 and 140 kWh for the

BEVs.

A slider allows to adjust the CO, emissions related to the production of the battery (expressed

in kg of CO,/kWh of battery). An information panel (Figure 5) provides guidance on the range

of values which can be found for the production of Li-ion batteries in the literature according

to [Lutsey et al., 2018; Aichberger et al., 2020]. By default, the value is set at the median value

of 50 publications on the issue, 120 kg of CO,/kWh of battery, and can be modified to any lower

or higher value by the user of the simulator.



https://www.concawe.eu/wp-content/uploads/Rpt-10-22.pdf
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3. Configuration panel

3.1 Vehicles section
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Finally, the total lifetime mileage of the vehicles can be adjusted, between 125000 km and

250000 km. As the life-cycle emissions are expressed in g CO,,eq/km, the emissions related

to the manufacture “decrease” when the lifetime of the vehicles increases, with the

underlying assumption that no further manufacture emissions will occur during the lifetime

of the vehicle (e.g. the original battery is used during the whole vehicle lifetime and there is

no battery replacement at the vehicle midlife).
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Figure 5: Screenshot of the battery information panel
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3. Configuration panel

3.2 Usage section
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Figure 6: Screenshot of the usage section

The usage section (Figure 6} allows to configure the recharge frequency of PHEVs, between
twice a day and every 10 days. Furthermore, the daily vehicle mileage can be selected: today,
only the two options presented in this article are available (Figure 7), but it is planned to
elaborate further options in the next versions of the tool. Finally, the climate conditions can
be set to either “Cold”, “Temperate” and “Hot", following the distribution curves presented in
this article (Figure 8).

Following the configuration of this section and of the previous one, the online simulator
calculates the energy performance of the vehicles exactly as presented in this article.

Prabaliby dansily ot scenssio s ‘j__:? Daily distance travelled : impacts € ) |
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For a given charging period, the daily distance traveled by a PHEV vehicle is extremely
influential on its behavior. It determines to the first order the distribution between the
different operating modes, in charge depleting (mainly electrical energy source) or in charge
sustaining {mainly chemical energy source).

This simulator is not based on a given travel distance, but on statistical distributions of
observed daily travelled distance. Several scenarios issued from the scientific litterature are
considered [1].

1] Pidtz, Patrick & Gronn, Tll & Wistschel, Martin. (2012). Tofal Crmership Cost Frafection for the German Ekciric
Winhicile Market with implications for its Futurg Power and Elec ricily Demand. 7t Conferance on Energy Bconomics.
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Figure 7: Screenshot of the daily vehicle mileage information panel
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3. Configuration panel

3.2 Usage section
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Climates considered and effect on consumption

Ambient temperatures have a strong influence on vehicle
consumptions. Highly electrified vehicles are particularly
sensitive, Cold temperatures impact battery performance,
and cabin comfort is alse very consuming.

This simulator is not based on a given ambient temperature,
Ioust om annual statistical temperature distributions. Three
scenarios are considered; “tempered”, representative of the
temperatures encountered in France, and two extreme
scenatios shifted by +/-10°, so close to the Swedish climates
(average temperature around 3*c) and Australian (average
temperature around 23", which is 5°C higher than the
average temperature of the hottest European country :
Grece),

The distribution of driving termp in France is taken
from the "Geco air” database, a free eco-driving application
developed by IFPEN and used by thousands of drivers to
evaluate and reduce the emvironmental footprint of their
mobility : wyw gecogir fr

Figure 8: Screenshot of the climate information panel
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Figure 9: Screenshot of the energies section

The energies section (Figure 9) allows to configure the electricity carbon intensity. An
information panel provides guidance to the user for the range of values to set (Figure 10). The
data presented here is extracted from a recent (2022) paper by the European Commission’s
Joint Research Center (JRC) [Scarlat et al., 2022]. It provides data from 2019 on GHG intensity

of used electricity in E

urope (with a split per each European country).

The estimated used electricity carbon intensity value for the European Union in 2019 was 334
g CO,,eq/kWh, down from approximately 650 g CO,,eq/kWh in 1990 and is expected to further
decrease in the coming decades. By default, the electricity GHG intensity is set at 334 g
CO2,eq/kWh in the simulator accordingly, but this value can be modified to any lower or

higher value by the user.
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This page shows greenhouse gas intensity of
electricity for European countries in order to
help users set this hypothesis that is used to
caloulate CO2eq emissions related to the
vehicle battery electricity consumption.

These values are extracted from Scarlat et al [1],
which gives a LCA based methodology to
quantify the produced and the consumed
electricity carbon intensities of European
countries. The estimated used electricity
carbon intensity value for the Eurcpean
Union for 2019 is 334 gCO2eq/kWh down
from approximatively 650 QCO2/kWh in 1990,
and is expected to further derease in the coming
decades. For further detalls concerning the
methodalogy, the factors taken into account and
the limitations, please consult the paper
published by the European Comission faint
Research Center (JRC) referenced below.

[7] Scarlat, M,; Prussi, M, Padella M.
Quantification of the carbon intensily af eleetricity
produced and used in Furope; Applied Energy,
Volume 305, 2022,

Figure 10: Screenshot of the electricity carbon intensity information panel
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3. Configuration panel

3.3 Energies section

Finally, several fuel options can be configured, either for the gasoline or the Diesel ICE. An
information panel (Figure 11) provides information about the fuels production pathways and
their WiT, TtW, WtW emissions and recycled CO,;, mostly extracted from the JEC WTT v5
report [JEC, 2020]. More details about the fuels production pathways can be obtained by
hovering the mouse pointer over a given bar. Some of the fuel options are already
commercially available in Europe (e.g. B7, B10, E10 and HVQ], some others are technically
accessible but not yet specified (e.g. E20) and some others are not yet available at industrial
scale (e.g. e-Methanol-to-Gasoline, e-Diesel via Fischer-Tropsch, BtL via Fischer-Tropsch
and Carbon Capture and Storage].

It is notable that the range of WtW emissions between the different fuels production pathways
is large, mainly depending on the renewable content of the fuel. One pathway can even
provide negative WtW emissions (BtL via Fischer-Tropsch and Carbon Capture and Storage):
as surprising as it may seem, this is technically correct as this pathway allows the CO,
captured by the biomass when it grows to be sequestrated underground.

Although this process is not expected to become mainstream, it is nevertheless necessary to
offset the remaining GHG emissions in a fully climate-neutral economy [IPCC, 2018].

e
E - This page shows fuel emissions considered in the LCA F&Mﬂ! Bucar
. GHG estimation k ) Sources of data : JEC report v5 2020
B i 115036
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TTW GHG emitted

Tarik to Wheel refers 10 the combustion process within the engine that comverts fuel
energy into CO2 emissions. N20 and CH are not considered in this graph but these
greenhouse gases (GHG) were added to the mtal TIW part in the main page bar
graph representdng LCA GHG emissions. Based on experimental obsenations
conducied in the study, the contribution of N20 and CH4 regarding CO2eq
emEsions represents 2.60% of CO2 extwust emissions for diesed and 0.73% for
gasoline applications.
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at least 13% the GHG emissions of transport fuels (eompared to a fossil reference),
which should lead to a share of renewable energy beyond the currert target of
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Figure 11: Screenshot of the fuel information panel
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BEVs:
CD:
CH4:
C02(eq):
COP:
CS:
GHG:
HEV:
LCA:
N20:
PHEV:
PMSM:
TtW:
WLT:
WitW:

Battery Electric Vehicles
Charge Depleting

Methane

Carbon Dioxide (equivalent)
Coefficient of Performance
Charge Sustaining

Green House Gas(es)
Hybrid Electric Vehicles
Life Cycle Assessment
Nitrous Oxide

Plug-in Hybrid Vehicle

Permanent Magnet Synchronous Machine

Tank-To-Wheels
Well-To-Tank
Well-To-Wheels
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